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Learning Objectives: 

 

From this module, a continuation of module 26, students may get to know 

about the following: 

1. Scattering of incident electromagnetic radiation by a free charged 

particle, say an electron. 

2. Scattering of radiation by a system of quasi-free charges and their 

coherent and incoherent addition in the background of X-ray 

scattering. 

3. Scattering by a bound charge including the effect of radiation 

damping. 

4. Analysis of the result obtained in different frequencies.  Rayleigh 

scattering and resonance fluorescence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

29 Thomson Scattering 
 

29.1 Scattering of radiation 

 

If a plane electromagnetic wave is incident on a free charged particle, the particle will 

feel a force due to the electromagnetic field of the incident wave.  This force will 

accelerate the charged particle; an accelerated charged particle emits radiation.  Thus an 

electromagnetic wave impinging on a charged particle leads to radiation by the charged 

particle.  The whole process can be viewed as the scattering of the incident wave by a 

charged particle.  It is this phenomenon that we wish to study in this module. 

 

We assume that the intensity of the incident wave is such that the motion of the charged 

particle induced by it is non-relativistic.  The emitted radiation will have the same 

frequency as that of the incident wave. 

 

The fields produced by a particle of mass m and charge e moving with velocity 


cv   

and acceleration 
 cv   were studied in module 26 and the emitted power in module 27.  

We recall the expressions for the fields in the non-relativistic limit from module 27: 
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Here n̂  is the unit vector in the direction of observation.  Only the acceleration part of the field is 

given since that is the one relevant for radiation.  This field is in the plane containing n̂  and 


.  

Since we are assuming that the motion of the particle is non-relativistic, the effect of the magnetic 

field is negligible, and the acceleration of the charged particle is solely due to the electric field.  If 

the propagation vector of the incident wave is 
0k


 , the amplitude of the electric field is 0E and the 

polarization vector is 0


, then  
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The acceleration produced in the particle is 
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The expression for power radiated by a non-relativistic particle was found in module 27, and is 
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Since the motion is non-relativistic, the charge moves only a small distance during one cycle of 

oscillation of the incoming wave.  As a result, the position vector x


 in equation (4) is constant, 

and the time average of 
2

v


 is ).Re(
2

1 vv  .  Using this expression in equation (5), the average 

power per unit solid angle can be written as  
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We are looking at it as scattering process, scattering of the incident wave by the point particle 

which acts as a scatterer.  Hence we express this result in terms of the scattering cross-section.  

Now the differential scattering cross-section, 
d

d
, in the case of radiation is defined as the 

energy radiated per unit time per unit solid angle divided by the incident energy flux (incident 

energy per unit area per unit time).  The incident energy flux is just the time averaged Poynting 

vector for the incident plane wave 

 

  nEcS ˆ
2

1 2

0


        (7) 

 

Hence the scattering cross-section becomes 
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Let the incident plane wave be along the z-axis as shown in the figure below. [See Figure, 14.12, 

from Jackson Edition 2]  Let the vector n̂  make an angle θ with this axis, and choose two 

directions, 21
ˆ,ˆ   in the plane containing ( n̂ , z) and perpendicular to it, respectively.  In terms of 

the unit vectors yx ee ˆ,ˆ  parallel to the x and y axis respectively, we have 
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If the incident wave is polarized along the x-axis, then  coscosˆ.ˆ
01 ee  and sinˆ.ˆ

02 ee .  

The angular distribution of the cross-section averaged over the final polarization is 
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Similarly, if the incident wave is polarized along the y-axis, then  sincosˆ.ˆ
01 ee  and 

cosˆ.ˆ
02 ee .  The angular distribution of the cross-section averaged over the final polarization 

is 
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If the incident radiation is unpolarized, the cross-section is the average of the two, and is therefore 
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This is the Thomson formula for differential scattering cross-section for scattering of radiation by 

a free charge.  It works for scattering of X-rays by electrons or γ-rays for protons. It does not 

work when the photon momentum and the recoil of the charged particle cannot be neglected. The 

integral of this over all angles yields the total cross-section 
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This is called the Thomson cross-section.  For electrons this has the value 
2810665.0   m2.  This 

is as it should be as the cross-section has dimensions of area.  The quantity in parentheses has the 

units of length. For electrons it has the value 
15

1082.2


 m.  This will be the radius of an 

electron if the total ``mass-energy'' of the electron were due to its charge being concentrated in a 

ball.  It is called the classical electron radius, an important number to remember. This tells us that 

even point particles have a finite scattering cross-section that appears in this limit to be 

independent of the wavelength of the light scattered. 

However, this is not really true if you recall the approximations made - this expression will fail if 

the wavelength is of the same order as the classical radius.  Beyond this pair production becomes 

a significant process, which is a quantum-mechanical process.  In quantum mechanics, if the 

energy of the incident photon, 
2mc , significant momentum is transferred to the electron by 

the collision and the energy of the scattered photon cannot be equal to the energy of the incident 

photon. The effect is certainly quantum-mechanical since the very idea of a photon having 

definite energy and momentum is quantum-mechanical in origin.  

As a result of the recoil of the charged particle (electron) by the incident photon, the energy of the 

photon is less and thereby the wavelength of the radiation is more than that of the incident beam.  

This leads to what is called Compton scattering, first studied by Compton both theoretically and 

experimentally.  The change in the energy (or wave number) of the photon can be calculated by 

applying the relativistic energy-momentum conservation law.  If the initial and final wave 

numbers of the photon are 
0k


 and k


 respectively, and the momentum of the electron after the 

collision is p


, energy-momentum conservation gives 
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On eliminating p


 between the two equations, we obtain 
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where θ is the scattering angle.  The formula for scattering cross-section is also suitably modified; 

for spinless point particles it is 
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For k=k0 this of course reduces to the Thomson formula.  At 0 , k=k0 and there is no 

deviation from the Thomson result.  As   increases, k decreases; the maximum reduction occurs 

for    where there is considerable reduction in the cross-section.  For given   the reduction 

is a function of the energy of the photon; the cross-section decreases with increasing energy. 

We know that electrons are spin-half particles.  For scattering by electrons the effect of the spin 

must also be taken into account which affects the results to some extent through the electron’s 

magnetic moment. 

29.2 Scattering by quasi-free charges 

Experimentally the results for scattering of X-rays by atoms agree reasonably well with equation 

(12) at wide angles, particularly for light atoms.  However, there is considerable deviation in the 

forward direction.  The actual cross-section increases quite rapidly compared to what is dictated 

by the Thomson formula.  The reason for this discrepancy is the coherent addition of amplitudes 

from all the electrons in the atom.  Equations (1) and (2) now apply to each individual electron.  

If we assume, as we have already done in fact, that the amplitude of motion of the electrons is 

much smaller than the wavelength of the radiation and the distance of the point of observation is 

also much larger than the inter-electron distance, then the total electric field (radiation part only) 

due to a number of electrons will be  
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The acceleration for each electron is given by equation (4).  Using this formula for the 

acceleration, we obtain 
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Since we are interested in radiation, distance R is large, and can be approximated by [See Figure 

14.8 from Jackson Edition 2; Same as in unit-28] 

  rnxR ˆ.ˆ         (19) 

Making this substitution in the above equation and going through the steps that led from equation 

(5) to equation (8) for the case of Thomson scattering by a free electron, we obtain 
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where 
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represents the change in the wave number vector.   

Equation (20) applies to scattering by free charged particles instantaneously at position jx


. But in 

an atom electrons are not free; they are bound to the nucleus.  However, if the frequency of 

incident radiation is large compared to characteristic frequencies of binding, the electrons can be 

treated as almost free while being accelerated by a pulse of short duration.  Thus equation (20) 

can be applied to scattering of radiation by even bound electrons as long as the frequency of the 

incident radiation is large compared to the binding frequencies of the electrons in the atom.  

Formula (20) applies to a specific position jx


 for the jth electron.  We have to take the average of 

equation (20) over the position of all the particles in the atom (or the nucleus as the case may be) 

to get the cross-section.  Thus 
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The symbol  implies averaging over all possible values of jx


. 

The cross-section (22) depends crucially on the value of the “momentum transfer”, q


.  The 

quantity jx


 has magnitude of the order of the dimensions of the bound system, say the atom.  Let 

this linear size of the system be denoted by a.  Then the cross-section behaves very differently for 

qa<<1 than for qa>>1.  If    is the scattering angle, then from equation (21) 
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Thus the dividing line between the two cases is at   such that 
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In case the when the frequency is low so that ka<<1, the condition qa<<1 is satisfied for all 

angles.  In case of high frequency, ka>>1, the condition q a<<1 will hold only for small angles.  

The dividing line between the two cases is for 
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For angles much less than cr  the limit q a<<1 holds, whereas for angles much greater than cr , 

the other limit q a>>1 holds. 

Now the argument of the exponential factor in equation (22) is qaqxxq jj  ~cos. 


, and hence 

for qa<<1 the exponential factor can be approximated by unity.  The exponential factor simplifies 

to 
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For an atom of atomic number Z, 
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simplifies to  

  
2

0

2

2

0

2
2 ˆ.ˆ)

4
()0(lim 


 



mc

e
Z

d

d
qa     (27) 

The factor Z2 has appeared because of coherence.  The amplitude due to all the electrons in the 

atom add coherently.  Thus the total amplitude is Z times that due to one electron and the cross-

section is Z2 times. 

In the opposite limit of qa>>1, the argument of the exponential factors are large and widely 

different in value.  As a result when the average of the sum of squares of all the terms in equation 

(22) is taken, all the cross terms will vanish.  Only the Z absolute square terms will survive and 

the cross-section becomes 
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As before, for the case of electrons in an atom the cross-section takes the form 
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This result corresponds to the incoherent addition of the amplitudes of all the electrons. 

Let us estimate the critical angle, cr , for the scattering of X-rays by atoms.  In the Thomas-

Fermi model of the atom, the atomic radius of an atom with atomic number Z is given by 
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Here 
2

2

0
0

4

me
a


  is the Bohr radius of the hydrogen atom.  On substituting this expression into 

the definition (25) of the critical angle, we obtain 
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The expression in the parenthesis has the dimension of energy.  If the numerical values of the 

various factors are substituted, this factor is nearly unity in units of keV.  Hence 
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 For angles less than the critical angle, the cross-section rises rapidly to the value given by 

equation (27).  At wide angles, the cross-section is given by equation (29), down by a factor of Z 

compared to (27). 

29.3 Scattering by a bound charge 

Let us now consider scattering of radiation by a bound charge.  We assume that the electron is 

bound in the atom by a spherically symmetric linear restoring force along with a damping factor.  

The equation of motion of the electron is then 

  Eexxxm
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Here m is the mass of the electron, xm
2

0  is the restoring force and xm   is the damping force 

on the electron. 



 

 

The origin of the damping force needs a little elaboration.  Quantum mechanically, apart from 

scattering or re-emission of the radiation, other modes of decay are also allowed which is 

equivalent to a dissipation of the radiation.  However, apart from this, the major source of 

dissipation is due to what is called radiation reaction. Proper understanding of this idea is 

difficult, it impinges on the realm of quantum electrodynamics, and in a sense it is not properly 

understood even within quantum electrodynamics, though otherwise it is a hugely successful 

theory.  However the effect of radiation damping in many processes can be included in a simple 

manner and this is what we proceed to do here. 

We have so far divided our study of electrodynamics into two categories and considered them 

independently. We have considered the production of electromagnetic field by moving charged 

particles along fixed trajectories, or the motion of charged particle in given electromagnetic 

fields.  However, when a charge is placed in a given field, it is accelerated and produces radiation 

fields.  These fields are bound to influence the subsequent motion of the charged particle.  For a 

correct treatment of the problem this influence must be taken into account.  This influence is the 

radiation reaction or radiation damping.   

Let us see how we can take the effect of radiation damping in a heuristic way.  The non-

relativistic motion of a particle with charge e and mass m under the influence of an external force 

eF


 is obtained from Newton’s law 
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To account for the effect of radiation on the motion of the particle, we modify this equation by 

including a reactive force terms, rF


.  So the equation now becomes 
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The question is: how to calculate this force?  As we know (module 27), the power radiated by a 

non-relativistically moving charged particle undergoing acceleration va 
  is given by (Larmor 

formula) 
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We find the reactive force by using principle of conservation of energy: the negative of the work 

done by the force should equal the actual amount of energy radiated by the particle, say from time 

t1 to t2.  In other words 
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On doing the integral on the right by parts, we obtain 
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If the motion is periodic we take the interval (t1, t2) as one period.  The state of the system will be 

the same at times t1 and t2.  Or if the time interval is short, the state of the system will again be the 

same at times t1 and t2.  In either case, the integrated term on the right hand side vanishes and we 

have 
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from which it follows that 
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where 
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The modified equation (33) can therefore be put in the form 
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This modified equation of motion is known as Abraham-Lorentz equation of motion.   

With the inclusion of the radiation reaction term via the Abraham-Lorentz equation, the equation 

of motion for a bound charge, equation (32) takes the form 
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When the electric field is due to incident radiation, it takes the form 
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Here E0 is the amplitude and ̂  the polarization vector of the electric field.  If the field is weak, 

the amplitude of oscillation of the electron will be small and we can approximate the field by its 

value at 0x


.  Equation (42) then becomes 
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This has steady state solution of the type  
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On substituting this solution into equation (44), we obtain 
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where 
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)(t  is called the total decay constant, and  
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is the radiative decay constant.  The acceleration of the charge is then 
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Comparing it with equation (4) for Thomson scattering by a free electron we see that there is an 

additional factor of (
22
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ti
) appearing in the expression for the acceleration.  Going 

through exactly the same steps that led from equation (4) to equation (8) for the Thomson case 

yields the following formula for the scattering cross-section for the case of bound electron: 
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The scattering cross-section is thus the Thomson cross-section multiplied by the 

factor
22222
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29.3.1 Rayleigh scattering and resonance fluorescence 

Let us now analyze equation (49).   

1. For frequencies small compared to the binding frequency, ( 0  ), the cross-section 

reduces to 
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The scattering at small frequencies, or equivalently long wavelengths, is thus inversely 

proportional to the fourth power of the wavelength.  This is the well-known Rayleigh law of 

scattering.  This formula is also valid for the scattering of light by air molecules (nitrogen and 

oxygen).  Air molecules scatter short wavelengths (blue) much more than the long wavelengths 

(red) thus leading to the blue colour of the sky.  The ratio of the wavelength of red light is 650nm, 

that of the blue light is 450nm, so their ratio is 1.44.  This makes scattering cross-section for blue 

light nearly eight times more than for red light. The redness of the rising and setting sun is also 

explained on the same basis. 

2. Now consider the case of frequencies close to the resonant frequency, 0~~ .  In this case we 

can make the following approximation in equation (49): 
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where we have used equation (47a) in the last step.  On using equation (40) for   and 

this approximation in equation (49), we obtain 
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As we have seen for the case of Thomson scattering, summing over the polarization of the 

scattered radiation, the factor 
2

0
ˆ.ˆ  

 is replaced by )cos1(
2

1 2 , and on further 

integrating on the entire solid angle it is replaced by 
3

8
.  Hence, finally we get 
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This is a typical resonance shape with half-width t  and peak cross-section (at 0  ) of 
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This scattering having features of a sharp resonance is called resonance fluorescence.  

Fluorescence spectroscopy is used in, among others, biochemical, medical, and chemical research 

fields for analyzing organic compounds.  

3. At very high frequencies, 0  , the cross-section (49) approximates to 
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since  22)( t .  For high frequencies therefore, the cross-section tends to 

the Thomson formula except for the factor (
221

1


) due to radiation damping.  Using 

definition (40) of  , 1  implies 1
6 3

0
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
mc

e


 , or 2137mc  on putting 

numerical values of various constants.  Thus this factor becomes important only at 

extremely high energies, deep into the quantum domain.  In other words, in the classical 

domain this factor can be totally neglected.  The figure below the scattering cross-section 

(49) as a function of the angular frequency,  . [See Figure 17.3 from Jackson Edition 

2] 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Summary 
 

1. In this module we have considered the scattering of electromagnetic 

radiation by a free charged particle 

2. Expression for the differential scattering cross-section as well as the 

total scattering cross-section, called Thomson formula is derived. 

3. Cross-section for scattering by quasi-free system of charges is 

obtained.  Conditions on the frequency and scattering angle for 

coherent and incoherent addition of the cross-section due to 

individual particles (electrons) are derived and the corresponding 

cross-sections obtained.  

4. Expression for critical angle for the case of X-rays is obtained. 

5. Next scattering by a bound charge is considered. The binding is 

provided by a harmonic restoring force. Resistive terms are also 

included in the equation of motion of the charged particle. 

6. The idea of radiation resistance is explained briefly and the Abraham-

Lorentz equation of motion derived. 

7. Expression for the cross-section including the resistive forces is 

derived.  The limiting cases of low, high and frequencies close to the 

binding frequency are discussed. 

8. For low frequencies we are led to Rayleigh scattering. Rayleigh 

scattering, when applied to scattering by air particles explains the 

blue of the sky and redness of the morning and evening sun. 

9. For frequencies close to the binding frequency it leads to the 

phenomenon of resonance fluorescence.  


